Skip to main content
Log in

Phytosymbiosis of aerobic methylobacteria: New facts and views

  • Review
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

This review highlightsrecent findings on the phytosymbiosis of aerobic methylobacteria, including their biodiversity, occurrence, and their role in associations with plants, as well as the capacity for biosynthesis of bioactive compounds (auxins, cytokinins, and vitamin Bl2) and nitrogen fixation. Future research directions in phytosymbiosis of aerobic methylobacteria during the postgenomics era are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Trotsenko, Yu.A., Ivanova, E.G., and Doronina, N.V., Aerobic Methylotrophic Bacteria as Phytosymbionts, Mikrobiologiya, 2001, vol. 70, no. 6, pp. 808–830 [Microbiology (Engl. Transl.), vol. 70, no. 6, pp. 623–632].

    Google Scholar 

  2. Trotsenko, Yu.A., Doronina, N.V., and Torgonskaya, M.L., Aerobnye metilobakterii (Aerobic Methylobacteria), Gal’chenko, V.F., Ed., Pushchino: ONTI PNTs RAN, 2010.

    Google Scholar 

  3. Nemecek-Marshall, M., MacDonald, R.C., Franzen, J.J., Wojciechowski C.L., and Fall, R., Methanol Emission from Leaves, Plant Physiol., 1995, vol. 108, no. 4, pp. 1359–1368.

    PubMed  CAS  Google Scholar 

  4. Galbally, I.E. and Kirstine, W., The Production of Methanol by Flowering Plants and the Global Cycle of Methanol, J. Atmos. Chem., 2002, vol. 43, pp. 195–229.

    Article  CAS  Google Scholar 

  5. Vuilleumier, S., Chistoserdova, L., Lee, M.-C., Bringel, F., Lajus, A., Zhou, Y., Gourion, B., Barbe, V., Chang, J., Cruveiller, S., Dossat, C., Gillett, W., Gruffaz, C., Haugen, E., Hourcade, E., Levy, R., Mangenot, S., Muller, E., Nadalig, T., Pagni, M., Penny, C, Peyraud, R., Robinson, D.G., Roche, D., Rouy, Z., Saenampechek, C., Salvignol, G., Vallenet, D., Wu, Z., Marx, C.J., Vorholt, J.A., Olson, M.V., Kaul, R., Weissenbach, J., Médigue, C., and Lidstrom, M.E., Methylobacterium Genome Sequences: a Reference Blueprint to Investigate Microbial Metabolism of C1 Compounds from Natural and Industrial Sources, PLoS ONE, 2009, vol. 4, e5584, doi:10.1371/journal.pone.0005584.

    Article  PubMed  Google Scholar 

  6. Gourion, B., Rossignol, M., and Vorholt, J.A., A Proteomic Study of Methylobacterium extorquens Reveals a Response Regulator Essential for Epiphytic Growth, Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, pp. 13186–13191.

    Article  PubMed  CAS  Google Scholar 

  7. Skovran, E., Crowther, G.J., Guo, X., Yang, S., and Lidstrom, M.E., A Systems Biology Approach Uncovers Cellular Strategies Used by Methylobacterium extorquens AM1 during the Switch from Multi- to Single-Carbon Growth, PLoS ONE, 2010, vol. 5, e14091, doi:10.1371/journal.pone.0014091.

    Article  PubMed  Google Scholar 

  8. Kutschera, U., Plant-Associated Methylobacteria as Co-Evolved Phytosymbionts: a Hypothesis, Plant Signal. Behav., 2007, vol. 2, pp. 74–78.

    Article  PubMed  Google Scholar 

  9. Doronina, N.V., Ivanova, E.G., Suzina, N.E., and Trotsenko, Yu.A., Methanotrophs and Methylobacteria Are Found in Woody Plant Tissues within the Winter Period, Mikrobiologiya, 2004, vol. 73, no. 6, pp. 817–824 [Microbiology (Engl. Transl.), vol. 73, no. 6, pp. 702–709].

    CAS  Google Scholar 

  10. Holland, M.A., Long, R.L.G., and Polacco, J.C., Methylobacterium spp.: Phylloplane Bacteria Involved in Cross-Talk with the Plant Host? in Phyllosphere Microbiology, Lindow, S.E., Hecht-Poinar, E.I., and Elliott, V.J., Eds., St. Paul: APS Press, 2002, pp. 125–135.

    Google Scholar 

  11. Hodkinson, B.P. and Lutzoni, F., A Microbiotic Survey of Lichen-Associated Bacteria Reveals a New Lineage from the Rhizobiales, Symbiosis, 2009, vol. 49, pp. 163–180.

    Article  CAS  Google Scholar 

  12. Ivanova, E., Doronina, N., and Trotsenko, Yu., Hansschlegelia plantiphila gen. nov. sp. nov., a New Aerobic Restricted Facultative Methylotrophic Bacterium Associated with Plants, Syst. Appl. Microbiol., 2007, vol. 30, pp. 444–452.

    Article  PubMed  CAS  Google Scholar 

  13. Bousfield, I.J. and Green, P.N., Reclassification of Bacteria of the Genus Protomonas Urakami and Komagata 1984 in the Genus Methylobacterium (Patt, Cole, and Hanson) Emend. Green and Bousfield 1983, Int. J. Syst. Bacteriol., 1985, vol. 35, p. 209.

    Article  Google Scholar 

  14. Austin, B. and Goodfellow, M. Pseudomonas mesophilica, a New Species of Pink Bacteria Isolated from Leaf Surfaces, Int. J. Syst. Bacteriol., 1979, vol. 29, pp. 373–378.

    Article  Google Scholar 

  15. Sy, A., Giraud, E., Jourand, P., Garcia, N., Willems, A., De Lajudie, P., Prin, Y., Neyra, M., Gillis, M., Boivin-Masson, C., and Dreyfus, B., Methylotrophic Methylobacterium Bacteria Nodulate and Fix Nitrogen in Symbiosis with Legumes, J. Bacteriol., 2001, vol. 183, pp. 214–220.

    Article  PubMed  CAS  Google Scholar 

  16. Madhaiyan, M., Kim, B.-Y., Poonguzhali, S., Kwon, S.-W., Song, M.-K., Ryu, J.-H., Go, S.-J., Koo, B.-S., and Sa, T.-M., Methylobacterium oryzae sp. nov., an Aerobic, Pink-Pigmented, Facultatively Methylotrophic, 1-Aminocyclopropane-1-Carboxylate Deaminase-Producing Bacterium Isolated from Rice, Int. J. Syst Evol. Microbiol., 2007, vol. 57, pp. 326–331.

    Article  PubMed  CAS  Google Scholar 

  17. Madhaiyan, M., Poonguzhali, S., Kwon, S.-W., and Sa, T.-M. Methylobacterium phyllosphaerae sp. nov., a Pink-Pigmented, Facultative Methylotroph from the Phyllosphere of Rice, Int. J. Syst. Evol. Microbiol., 2009, vol. 59, pp. 22–27.

    Article  PubMed  CAS  Google Scholar 

  18. Kang, Y-S., Kim, J., Shin, H.-D., Nam, Y.-D., Bae, J.-W., Jeon, C.O., and Park, W., Methylobacterium platani sp. nov., Isolated from a Leaf of the Tree Platanus orientalis, Int. J. Syst. Evol. Microbiol., 2007, vol. 57, pp. 2849–2853.

    Article  PubMed  CAS  Google Scholar 

  19. Van Aken, B., Peres, C.M., Lafferty Doty, S., Yoon, J.M., and Schnoor, J.L., Methylobacterium populi sp. nov., a Novel Aerobic, Pink-Pigmented, Facultatively Methylotrophic, Methane-Utilizing Bacterium Isolated from Poplar Trees (Populus deltoides × nigra DN34), Int. J. Syst. Evol. Microbiol., 2004, vol. 54, pp. 1191–1196.

    Article  PubMed  Google Scholar 

  20. Ito, K. and Iizuka, H., Taxonomic Studies on a Radio-Resistant Pseudomonas. Part XII. Studies on the Microorganisms of Cereal Grain, Agric. Biol. Chem., 1971, vol. 35, pp. 1566–1571.

    Article  Google Scholar 

  21. Doronina, N.V., Trotsenko, Yu.A., Kolganova, T.V., Tourova, T.P., and Salkinoja-Salonen, M.S., Methylobacillus pratensis sp. nov., a Novel Non-Pigmented, Aerobic, Obligately Methylotrophic Bacterium Isolated from Meadow Grass, Int. J. Syst. Evol. Microbiol., 2004, vol. 54, pp. 1453–1457.

    Article  PubMed  CAS  Google Scholar 

  22. Gogleva, A.A., Kaparullina, E.N., Doronina, N.V., and Trotsenko, Yu.A., Methylophilus flavus sp. nov. and Methylophilus luteus sp. nov., Aerobic, Methylotrophic Bacteria Associated with Plants, Int. J. Syst. Evol. Microbiol., 2010, vol. 60, pp. 2623–2628.

    Article  PubMed  CAS  Google Scholar 

  23. Madhaiyan, M., Poonguzhali, S., Kwon, S.-W., and Sa, T.-M., Methylophilus rhizosphaerae sp. nov., a Restricted Facultative Methylotroph Isolated from Rice Rhizosphere Soil, Int. J. Syst. Evol. Microbiol., 2009, vol. 59, pp. 2904–2908.

    Article  PubMed  CAS  Google Scholar 

  24. Doronina, N.V., Kudinova, L.V., and Trotsenko, Yu.A., Methylovorus mays sp. nov.: A New Species of Aerobic, Obligately Methylotrophic Bacteria Associated with Plants, Mikrobiologiya, 2000, vol. 69, no. 5, pp. 712–716 [Microbiology (Engl. Transl.), vol. 69, no. 5, pp. 599–603].

    CAS  Google Scholar 

  25. Knief, C., Ramette, A., Frances, L., Alonso-Blanco, C., and Vorholt, J.A., Site and Plant Species Are Important Determinants of the Methylobacterium Community Composition in the Plant Phyllosphere, The ISME J., 2010, vol. 4, pp. 719–728.

    Article  CAS  Google Scholar 

  26. Delmotte, N., Knief, C., Chaffron, S., Innerebner, G., Roschitzki, B., Schlapbach, R., von Mering, C., and Vorholt, J.A., Community Proteogenomics Reveals Insights into the Physiology of Phyllosphere Bacteria, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, pp. 16428–16433.

    Article  PubMed  CAS  Google Scholar 

  27. Ikeda, S., Okubo, T., Anda, M., Nakashita, H., Yasuda, M., Sato, S., Kaneko, T., Tabata, S., Eda, S., Momiyama, A., Terasawa, K., Mitsui, H., and Minamisawa, K., Community- and Genome-Based Views of Plant-Associated Bacteria: Plant-Bacterial Interactions in Soybean and Rice, Plant Cell Physiol., 2010, vol. 51, pp. 1398–1410.

    Article  PubMed  CAS  Google Scholar 

  28. Whipps, J.M., Hand, P., Pink, D., and Bending, G.D., Phyllosphere Microbiology with Special Reference to Diversity and Plant Genotype, J. Appl. Microbiol., 2008, vol. 105, pp. 1744–1755.

    Article  PubMed  CAS  Google Scholar 

  29. Redford, A.J., Bowers, R.M., Knight, R., Linhart, Y., and Fierer, N., The Ecology of the Phyllosphere: Geographic and Phylogenetic Variability in the Distribution of Bacteria on Tree Leaves, Environ. Microbiol., 2010, vol. 12, pp. 2885–2893.

    Article  PubMed  Google Scholar 

  30. Knief, C., Frances, L., Cantet, F., and Vorholt, J.A., Cultivation-Independent Characterization of Methylobacterium Populations in the Plant Phyllosphere by Automated Ribosomal Intergenic Spacer Analysis (ARISA), Appl. Environ. Microbiol., 2008, vol. 74, pp. 2218–2228.

    Article  PubMed  CAS  Google Scholar 

  31. Pirttila, A.M., Laukkanen, H., Pospiech, H., Myllyla, R., and Hohtola, A., Detection of Intracellular Bacteria in the Buds of Scotch Pine (Pinus sylvestris L.) by in situ Hybridization, Appl. Environ. Microbiol., 2000, vol. 66, pp. 3073–3077.

    Article  PubMed  CAS  Google Scholar 

  32. Abanda-Nkpwatt, D., Müsch, M., Tschiersch, J., Boettner, M., and Schwab, W., Molecular Interaction Between Methylobacterium extorquens and Seedlings: Growth Promotion, Methanol Consumption, and Localization of the Methanol Emission Site, J. Exp. Bot., 2006, vol. 57, pp. 4025–4032.

    Article  PubMed  CAS  Google Scholar 

  33. Jourand, P., Renier, A., Rapior, S., Miana de Faria, S., Prin, Y., Galiana, A., Giraud, E., and Dreyfus, B., Role of Methylotrophy during Symbiosis between Methylobacterium nodulans and Crotalaria podocarpa, Mol. Plant Microb. Interact., 2005, vol. 18, no. 10, pp. 1061–1068.

    Article  CAS  Google Scholar 

  34. Sy, A., Timmers, A.C.J., Knief, C., and Vorholt, J.A., Methylotrophic Metabolism Is Advantageous for Methylobacterium extorquens during Colonization of Medicago truncatula under Competitive Conditions, Appl. Environ. Microbiol., 2005, vol. 71, pp. 7245–7252.

    Article  PubMed  CAS  Google Scholar 

  35. Chistoserdova, L. and Lidstrom, M.E., Molecular and Mutational Analysis of a DNA Region Separating Two Methylotrophy Gene Clusters in Methylobacterium extorquens AM1, Microbiology (UK), 1997, vol. 143, pp. 1729–1736.

    Article  CAS  Google Scholar 

  36. Bosch, G., Skovran, E., Xia, Q., Wang, T., Taub, F., Miller, J.A., Lidstrom, M.E., and Hackett, M., Comprehensive Proteomics of Methylobacterium extorquens AM1 Metabolism under Single Carbon and Nonmethylotrophic Conditions, Proteomics, 2008, vol. 8, no. 17, pp. 3494–3505.

    Article  PubMed  CAS  Google Scholar 

  37. Schmidt, S., Christen, P., Kiefer, P., and Vorholt, J.A., Functional Investigation of Methanol Dehydrogenase-Like Protein XoxF in Methylobacterium extorquens AM1, Microbiology (UK), 2010, vol. 156, pp. 2575–2586.

    Article  CAS  Google Scholar 

  38. Holland, M.A., Occam’s Razor Applied to Hormonology. Are Cytokinins Produced by Plants?, Plant Physiol., 1997, vol. 115, no. 3, pp. 865–868.

    PubMed  CAS  Google Scholar 

  39. Kakimoto, T., Identification of Plant Cytokinin Biosynthetic Enzymes as Dimethylallyl Diphosphate: ATP/ADP Isopentenyltransferases, Plant. Cell Physiol., 2001, vol. 42, pp. 677–685.

    Article  PubMed  CAS  Google Scholar 

  40. Takei, K., Sakakibara, H., and Sugiyama, T., Identification of Genes Encoding Adenylate Isopentenyltransferase, a Cytokinin Biosynthesis Enzyme, in Arabidopsis thaliana, J. Biol. Chem., 2001, vol. 276, pp. 26405–26410.

    CAS  Google Scholar 

  41. Mok, D.W. and Mok, M.C., Cytokinin metabolism and action, Annu. Rev. Plant Physiol. Plant Mol. Biol., 2001, vol. 52., pp. 89–118.

    Article  PubMed  Google Scholar 

  42. Kakimoto, T., Biosynthesis of Cytokinins, J. Plant Res., 2003, vol. 116, pp. 233–239.

    Article  PubMed  CAS  Google Scholar 

  43. Koenig, R.L., Morris, R.O., and Polacco, J.C., tRNA Is the Source of Low-Level trans-Zeatin Production in Methylobacterium spp., J. Bacteriol., 2002, vol. 184, no. 7, pp. 1832–1842.

    Article  PubMed  CAS  Google Scholar 

  44. Taiz, L. and Zeiger, E., Auxin: the Growth Hormone, in Plant Physiology, 3rd ed., Sinauer Associates, 2002, ch. 19, pp. 423–460.

  45. Bartel, B., LeClere, S., Magidin, M., and Zolman, B.K., Inputs to the Active Indole-3-Acetic Acid Pool: de novo Synthesis, Conjugate Hydrolysis, and Indole-3-Butyric Acid βOxidation, J. Plant Growth Regul., 2001, vol. 20, pp.198–216.

    Article  CAS  Google Scholar 

  46. Woodward, A.W. and Bartel, B., Auxin: Regulation, Action and Interaction, Ann. Bot., 2005, vol. 95, pp. 707–735.

    Article  PubMed  CAS  Google Scholar 

  47. Spaepen, S., Vanderleyden, J., and Remans, R., Indole-3-Acetic Acid in Microbial and Microorganism-Plant Signaling, FEMS Microbiol. Rev., 2007, vol. 31, pp. 425–448.

    Article  PubMed  CAS  Google Scholar 

  48. Ivanova, E.G. and Doronina, N.V., Trotsenko Yu.A. Aerobic Methylobacteria Are Capable of Synthesizing Auxins, Mikrobiologiya, 2001, vol. 70, no. 4, pp. 452–458 [Microbiology (Engl. Transl.), vol. 70, no. 4, pp. 392–397].

    CAS  Google Scholar 

  49. Doronina, N.V., Ivanova, E.G., Trotsenko, Yu.A. New Evidence for the Ability of Methylobacteria and Methanotrophs to Synthesize Auxins, Mikrobiologiya, 2002, vol. 71, no. 1, pp. 130–132 [Microbiology (Engl. Transl.), vol. 71, no. 1, pp. 116–118].

    CAS  Google Scholar 

  50. Fedorov, D.N., Doronina, N.V., Trotsenko, Yu.A. Cloning and Characterization of Indolepyruvate Decarboxylase from Methylobacterium extorquens AM1, Biokhimiya, 2010, no. 12, vol. 75, pp. 1651–1661 [Biochemistry (Moscow) (Engl. Transl.), vol. 75, no. 12, pp. 1435–1443].

    Google Scholar 

  51. Prinsen, E., Costacurta, A., Michiels, K., Vanderleyden, J., and Van Onckelen, H., Azospirillum brasilense Indole-3-Acetic Acid Biosynthesis: Evidence for a Non-Tryptophan Dependent Pathway, Mol. Plant-Microbe Interact., 1993, vol. 6, pp. 609–615.

    Article  CAS  Google Scholar 

  52. Costacurta, A., Keijers, V., and Vanderleyden, J., Molecular Cloning and Sequence Analysis of an Azospirillum brasilense Indole-3-Pyruvate Decarboxylase Gene, Mol. Gen. Genet., 1994, vol. 243, pp. 463–472.

    PubMed  CAS  Google Scholar 

  53. Manulis, S., Haviv-Chesner, A., Brandl, M.T., Lindow, S.E., and Barash, I., Differential Involvement of Indole-3-Acetic Acid Biosynthetic Pahtways in Pathogenicity and Epiphytic Fitness of Erwinia herbicola pv. gypsophilae, Mol. Plant-Microbe Interact., 1998, vol. 11, pp. 634–642.

    Article  PubMed  CAS  Google Scholar 

  54. Bianco, C., Imperlini, E., Calogero, R., Senatore, B., Amoresano, A., Carpentieri, A., Pucci, P., and Defez, R., Indole-3-Acetic Acid Improves Escherichia coli’s Defences to Stress, Arch. Microbiol., 2006, vol. 185, pp. 373–382.

    Article  PubMed  CAS  Google Scholar 

  55. Bianco, C., Imperlini, E., Calogero, R., Senatore, B., Pucci, P., and Defez, R., Indole-3-Acetic Acid Regulates the Central Metabolic Pathways in Escherichia coli, Microbiology (UK), 2006, vol. 152, pp. 2421–2431.

    Article  CAS  Google Scholar 

  56. Fedorov, D.N., But, S.Yu., Doronina, N.V., and Trotsenko, Yu.A., Effect of Exogenous Indoleacetic Acid on the Activity of the Central Metabolism Enzymes in Methylobacterium extorquens AM1, Mikrobiologiya. 2009, vol. 78, no. 6, pp. 844–846 [Microbiology (Engl. Transl.), vol. 78, no. 6, pp. 802–804].

    Google Scholar 

  57. Glick, B.R., Todorovic, B., Czarny, J., Cheng, Z., Duan, J., and McConkey, B., Promotion of Plant Growth by Bacterial ACC Deaminase, Crit. Rev. Plant Sci., 2007, vol. 26, pp. 227–242.

    Article  CAS  Google Scholar 

  58. Arshad, M. and Frankenberger, W.T.,Jr. Ethylene: Agricultural Sources and Applications, New York: Kluwer Academic/Plenum, 2002.

    Google Scholar 

  59. Kende, H., Ethylene Biosynthesis, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1993, vol. 44, pp. 283–307.

    Article  CAS  Google Scholar 

  60. Honma, M. and Shimomura, T., Metabolism of 1-Aminocyclopropane-1-Carboxylic Acid, Agric. Biol. Chem., 1978, vol. 42, pp. 1825–1831.

    Article  CAS  Google Scholar 

  61. McDonnel, L., Plett, J.M., Andersson-Gunnerås, S., Kozela, C., Dugardeyn, J., Van Der Straeten, D., Glick, B.R., Sundberg, B., and Regan, S., Ethylene Levels Are Regulated by Plant Encoded 1-Aminocyclopropane-1-Carboxylic Acid Deaminase, Physiol. Plant., 2009, vol. 136, pp. 94–109.

    Article  Google Scholar 

  62. Madhaiyan, M., Poonguzhali, S., Ryu, J., and Sa, T., Regulation of Ethylene Level in Canola (Brassica campestris) by 1-Aminocyclopropane-1-Carboxylate Deaminase Containing Methylobacterium fujisawaense, Planta, 2006, vol. 244, pp. 268–278.

    Article  Google Scholar 

  63. Madhaiyan, M., Poonguzhali, S., and Sa, T., Characterization of 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase Containing Methylobacterium oryzae and Interactions with Auxins and ACC Regulation of Ethylene in Canola (Brassica campestris), Planta, 2007, vol. 226, pp. 867–876.

    Article  PubMed  CAS  Google Scholar 

  64. Chinnadurai, C., Balachandar, D., and Sundaram, S.P., Characterization of 1-Aminocyclopropane-1-Carboxylate Deaminase Producing Methylobacteria from Phyllosphere of Rice and Their Role in Ethylene Regulation, World J. Microbiol. Biotechnol., 2009, vol. 25, pp. 1403–1411.

    Article  CAS  Google Scholar 

  65. Fedorov, D.N., Metabolic Aspects of Phytosymbiosis of Aerobic Methylotrophic Bacteria, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Pushchino, 2010.

  66. Martinez-Romero, E., The Dinitrogen-Fixing Bacteria, in The Prokaryotes, 3rd ed., Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., and Stackebrandt, E., Eds., New York: Springer, 2006, vol. 2, pp. 793–817.

    Chapter  Google Scholar 

  67. Zehr, J.P., Jenkins, B.D., Short, S.M., and Steward, G.F., Nitrogenase Gene Diversity and Microbial Community Structure: a Cross-System Comparison, Environ. Microbiol., 2003, vol. 5, pp. 539–554.

    Article  PubMed  CAS  Google Scholar 

  68. Wiegel, J.K.W., Genus Xanthobacter, in Bergey’s Manual of Systematic Bacteriology, 2nd ed., Brenner, Krieg, Staley, and Garrity, Eds., New York: Springer, 2005, vol. 2, pp. 555–566.

    Chapter  Google Scholar 

  69. Kennedy, C., Genus Beijerinckia, in Bergey’s Manual of Systematic Bacteriology, 2nd ed., Brenner, Krieg, Staley, and Garrity, Eds., New York: Springer, 2005, vol. 2, pp. 423–432.

    Chapter  Google Scholar 

  70. Jaftha, J.B., Strijdom, B.W., and Steyn, P.L., Characterization of Pigmented Methylotrophic Bacteria Which Nodulate Lotononis bainesii, System. Appl. Microbiol., 2002, vol. 25, pp. 440–449.

    Article  CAS  Google Scholar 

  71. Murrell, J.C. and Dalton, H., Nitrogen Fixation in Obligate Methanotrophs, J. Gen. Microbiol., 1983, vol. 129, pp. 3481–3486.

    CAS  Google Scholar 

  72. Auman, A.J., Speake, C.C., and Lidstrom, M.E., nifH Sequences and Nitrogen Fixation in Type I and Type II Methanotrophs, Appl. Environ. Microbiol., 2001, vol. 67, no. 9, pp. 4009–4016.

    Article  PubMed  CAS  Google Scholar 

  73. Boulygina, E.S., Kuznetsov, B.B., Marusina, A.I., Tourova, T.P., Kravchenko, I.K., Bykova, S.A., Kolganova, T.V., and Galchenko, V.F., A Study of Nucleotide Sequences of nifH Genes of Some Methanotrophic Bacteria, Mikrobiologiya, 2002, vol. 71, no. 4, pp. 500–508 [Microbiology (Engl. Transl.), vol. 78, no. 6, pp. 425–432].

    Google Scholar 

  74. Dedysh, S.N., Ricke, P., and Liesack, W., NifH and NifD Phylogenies: An Evolutionary Basis for Understanding Nitrogen Fixation Capabilities of Methanotrophic Bacteria, Microbiology (UK), 2004, vol. 150, pp. 1301–1313.

    Article  CAS  Google Scholar 

  75. Fedorov, D.N., Ivanova, E.G., Doronina, N.V., and Trotsenko, Yu.A., A New System of Degenerate Oligonucleotide Primers for Detection and Amplification of nifHD Genes, Mikrobiologiya, 2008, vol. 77, no. 2, pp. 286–288 [Microbiology (Engl. Transl.), vol. 77, no. 2, pp. 247–249].

    CAS  Google Scholar 

  76. Ivanova, E.G., Fedorov, D.N., Doronina, N.V., and Trotsenko, Yu.A., Production of Vitamin B12 in Aerobic Methylotrophic Bacteria, Mikrobiologiya, 2006, vol. 75, no. 4, pp. 570–572 [Microbiology (Engl. Transl.), vol. 75, no. 4, pp. 494–496].

    CAS  Google Scholar 

  77. Renier, A., Jourand, P., Rapoir, S., Poinsot, V., Sy, A., Dreyfus, B., and Moulin, L., Symbiotic Properties of Methylobacterium nodulans ORS 2060T: a Classic Process for an Atypical Symbiont, Soil Biol. Biochem., 2008, vol. 40, pp. 1404–1412.

    Article  CAS  Google Scholar 

  78. Ardley, J.K., O’Hara, G.W., Reeve, W.G., Yates, R.J., Dilworth, M.J., Tiwari, R.P., and Howieson, J.G., Root Nodule Bacteria Isolated from South African Lotononis bainesii, L. listii and L. solitudinis Are Species of Methylobacterium That Are Unable to Utilize Methanol, Arch. Microbiol., 2009, vol. 191, pp. 311–318.

    Article  PubMed  CAS  Google Scholar 

  79. Hou, S., Makarova, K.S., Saw, J.H.W., Senin, P., Ly, B.V., Zhou, Z., Ren, Y., Wang, J., Galperin, M.Y., Omelchenko, M.V., Wolf, Y.I., Yutin, N., Koonin, E.V., Stott, M.B., Mountain, B.W., Crowe, M.A., Smirnova, A.V., Dunfield, P.F., Feng, L., Wang, L., and Alam, M., Complete Genome Sequence of the Extremely Acidophilic Methanotroph Isolate V4, Methylacidiphilum infernorum, a Representative of the Bacterial Phylum Verrucomicrobia, Biology Direct, 2008, vol. 3, doi: 10.1186/1745-6150-3-26.

  80. Kane, S.R., Chakicherla, A.Y., Chain, P.S.G., Schmidt, R., Shin, M.W., Legler, T.C., Scow, K.M., Larimer, F.W., Lucas, S.M., Richardson, P.M., and Hristova, K.R., Whole-Genome Analysis of the Methyl tert-Butyl Ether-Degrading Beta-Proteobacterium Methylibium petroleiphilum PM1, J. Bacteriol., 2007, vol. 189, pp. 1931–1945.

    Article  PubMed  CAS  Google Scholar 

  81. Chistoserdova, L., Lapidus, A., Han, C., Goodwin, L., Saunders, L., Brettin, T., Tapia, R., Gilna, P., Lucas, S., Richardson, P.M., and Lidstrom, M.E., Genome of Methylobacillus flagellatus, Molecular Basis for Obligate Methylotrophy, and Polyphyletic Origin of Methylotrophy, J. Bacteriol., 2007, vol. 189, pp. 4020–4027.

    Article  PubMed  CAS  Google Scholar 

  82. Gourion, B., Francez-Charlot, A., and Vorholt, J.A., PhyR Is Involved in the General Stress Response of Methylobacterium extorquens AM1, J. Bacteriol., 2008, vol. 190, pp. 1027–1035.

    Article  PubMed  CAS  Google Scholar 

  83. Francez-Charlot, A., Frunzke, J., Reichen, C., Zingg Ebneter, J., Gourion, B., and Vorholt, J., Sigma Factor Mimicry Involved in Regulation of General Stress Response, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, pp. 3467–3472.

    Article  PubMed  CAS  Google Scholar 

  84. Williams, P., Quorum Sensing, Communication and Cross-Kingdom Signaling in the Bacterial World, Microbiology (UK), 2007, vol. 153, pp. 3923–3938.

    Article  CAS  Google Scholar 

  85. Nieto Penalver, C.G, Morin, D., Cantet, F., Saurel, O., Milon, A., and Vorholt, J.A., Methylobacterium extorquens AM1 Produces a Novel Type of Acyl-Homoserine Lactone with a Double Unsaturated Side Chain under Methylotrophic Growth Conditions, FEBS Lett., 2006, vol. 580, pp. 561–567.

    Article  PubMed  CAS  Google Scholar 

  86. Nieto Penalver, C.G., Cantet, F., Morin, D., Haras, D., and Vorholt, J.A., A Plasmid-Borne Truncated luxI Homolog Controls Quorum-Sensing Systems and Extracellular Carbohydrate Production in Methylobacterium extorquens AM1, J. Bacteriol., 2006, vol. 188, pp. 7321–7324.

    Article  Google Scholar 

  87. Omer, Z.S., Tombolini, R., and Gerhardson, B., Plant Colonization by Pink-Pigmented Facultative Methylotrophic Bacteria (PPFMs), FEMS Microbiol. Ecol., 2004, vol. 47, pp. 319–326.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Trotsenko.

Additional information

Original Russian Text © D.N. Fedorov, N.V. Doronina, Yu.A. Trotsenko, 2011, published in Mikrobiologiya, 2011, Vol. 80, No. 4, pp. 435–446.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedorov, D.N., Doronina, N.V. & Trotsenko, Y.A. Phytosymbiosis of aerobic methylobacteria: New facts and views. Microbiology 80, 443–454 (2011). https://doi.org/10.1134/S0026261711040047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261711040047

Keywords

Navigation